Collaborative Phenotyping at King's College London: HipSci and the Stem Cell Hotel

Recorded On: 02/05/2018

We work in the framework of the Human Induced Pluripotent Stem Cells Initiative (HipSci) project, funded by the Wellcome Trust and MRC (www.hipsci.org). Here, we will present in particular the characterisation of a large panel of human induced pluripotent stem cells, focusing on the integration of high content imaging data with genomics. Imaging over 100 human iPS cell lines from healthy donors we have observed evidence for inter-individual variability in cell behaviour. Cells were plated on different concentrations of fibronectin and phenotypic features describing cell morphology, proliferation and adhesion were obtained by high content imaging as in our previously reported method. Furthermore, we have used dimensionality reduction approaches to understand how different extrinsic (fibronectin concentration), intrinsic (cell line or donor) and technical factors affected variation. We have identified with our platform specific RNAs associated with intrinsic or extrinsic factors and single nucleotide variants that account for outlier cell behaviour.  We will also mention significant progress in the integration of dynamic imaging data with other datasets.  By leveraging the expertise derived on this project, we now provide to internal and external scientists a dedicated laboratory space for collaborative cell phenotyping to study how intrinsic and extrinsic signals impact on human cells to develop assays for disease modeling and drug discovery and to identify new disease mechanisms.

Davide Danovi

King's College London

Davide Danovi holds an MD from University of Milan and a PhD in Molecular Oncology from the European Institute of Oncology where he demonstrated the causative role of the HdmX protein in human cancer. He completed his postdoctoral training working with Prof. Austin Smith and Dr. Steve Pollard at the University of Cambridge and at University College London where he developed a screening platform to isolate compounds active on human neural stem cells from normal or brain tumour samples. Prior to his current role, he worked as principal scientist at a novel biotechnology company founded to isolate drugs for regenerative medicine using innovative stem cell technologies.

Components visible upon registration.